
Fine-To-Coarse Global Registration of RGB-D Scans
Supplemental Material

Maciej Halber
Princeton University

mhalber@cs.princeton.edu

Thomas Funkhouser
Princeton University

funk@cs.princeton.edu

1. Algorithm Details
This section provides supplemental technical and

implementation details in support of Section 4 of the
paper.

1.1. Preprocessing

Extracting Features As described in the main paper,
for each input image I[k] we extract a set of features
F [k]. In our implementation we use 4 feature types:

1. Plane All parts of the image that are locally pla-
nar, i.e. can be represented as a position and a
normal. We construct a planar surface feature for
each pixel in coplanar clusters of size ≥ 100.

2. Silhouette We have found it useful to mark
depth discontinuities with a separate feature type.
These are represented as a point, normal and a
direction along the silhouette. Normal and di-
rection are estimated with PCA on neighboring
silhouette pixels. The same approach is used to
estimate direction for Ridge and Valley features.

3. Ridge If two large planes are intersecting and the
angle between their normals is larger than π we
mark the intersection as a ridge feature.

4. Valley - If two large planes are intersecting and
the angle between their normals is smaller than
π we mark them as a valley feature. Both valley
and ridge features are represented as a position,
normal (average of the normals of neighboring
planes) and direction along the intersection.

We subsample the initial set of features using the
Poisson Dart Algorithm, with a minimum spacing be-
tween the features equal to 0.05m. We first visit all
the silhouette edges, then the ridges and valleys, fol-
lowed by the planar features. This process allows us to
create a uniformly sampled set of features for each im-
age I[k], which improves the closest point constraint
search times.

In our implementation we used a different weights
to indicate the importance and our confidence for
each feature type. Values used were ωplane = 1.0,
ωsilhouette = 0.6, ωridge = 0.2, ωvalley = 0.2.
Creating Base Planar Proxies To detect a set of pla-
nar proxies B in images I we have implemented our
own agglomerative hierarchical clustering algorithm.
We have found it to perform better that region grow-
ing or RANSAC algorithms on a noisy dataset like
SUN3D. The low-level algorithmic details are:

• Apply a bilateral filter to reduce noise and quan-
tization effects (σxy = 3px, σdepth = 5cm).
• Mark pixels as boundaries if their depths differ

from any of their neighbors by more than 10%.
• Compute connected components by partitioning

the image on boundaries
• Estimate normals for pixels using RANSAC on

neighborhoods of radius r = 10cm within the
same connected component.
• Compute sets of coplanar pixels using hierarchi-

cal clustering.
• Refine clusters with a RANSAC algorithm to re-

assign pixels to their largest compatible cluster.
• For each cluster insert proxy to B. Assign the

centroid, normal and radius for the proxy based
on PCA of the associated pixels.

Each resulting planar proxy is represented by a cen-
troid and a normal B[j] = {p, ~n}.
Aligning Adjacent Images The frame-to-frame
tracking that is used in our implementation is based
on system proposed int Xiao et al.[10]. We begin by
extracting matching SIFT features in consecutive RGB
images. This process returns two sets of image loca-
tions P ′k and P ′k+1. For each set of image locations
we reject candidates that do not have valid depth value
in the accompanying depth image, to create pruned out
sets Pk and Pk+1. Since all points in both sets now

1

have valid depths, they can be back-projected into 3D
using the intrinsics matrix K, to create Xk and Xk+1.
We use RANSAC to find a transformation that matches
most of the back-projected points in order to create a
pairwise transformation L[k].
Initializing Transformations We then concatenate
the transformations to create an initial set of poses for
our optimization T0.

(T0[0] = I;T0[j] = L[j]T0[j − 1]; j ∈ [1; k])

1.2. Fine-to-Coarse Refinement

Creating Co-planarity Constraints. When cluster-
ing coplanar proxies B we again use an agglomera-
tive clustering algorithm that merges the transformed
proxies based on their pairwise similarity. Similarity is
expressed as a product of pairwise point-to-plane dis-
tance factors fpp and normal deviation factors fnd. For
pair of proxies Ba, Bb:

Sab = fpp(Ba, Bb)fpp(Bb, Ba)fnd(Ba, Bb)

Factors are expressed with respect to set maximum
thresholds. In our implementation the max pairwise
distance was set to td = 30cm and the maximum nor-
mal deviation to ta = π

8

fpp(Ba, Bb) =

{
1.0− d(pa,Bb)

td
if d(pa, Bb) ≥ td

0.0 if d(pa, Bb) < td

fnd(Ba, Bb) =

{
1.0− ∠(~na, ~nb)

ta
if ∠(~na, ~nb) ≥ ta

0.0 if ∠(~na, ~nb) < ta

Result of this procedure constitutes set of cluster
proxies P
Creating Planar Relationship Constraints. When
deciding on the type of the relationship and its weight
we use exponential function with σθ = 0.13. This
value will assign negligible weights to relationships
that deviate more that 15◦ from the desired angle. It
is possible that this parameter should be adjusted iter-
atively, but we have not spent much time investigating
or tweaking it.
Creating Feature Correspondence Constraints. For
finding closest point correspondences we used the ini-
tial thresholds for distance and normal deviation were

{dinitial = 0.5m,αinitial = 30◦}

and for final thresholds:

{dfinal = 0.2m,αfinal = 20◦}

These values are adjusted based on the distance along-
side trajectory between images whose features are cur-
rently considered. The initial values decrease as a
square root with this distance, where the maximum
is reached when the distance is equal to 0.5li and the
minimum is when the distance is 0;

Although the error function presented in the pa-
per is non-linear, we find that our overall algorithm
converges more quickly when the variables are re-
laxed with a linear approximation once per iteration.
To solve the system of linear equations we used the
CSparse solver [4]. Though this approach is related
to solving the non-linear function with a series of lin-
ear approximations (e.g., as is common in solvers like
Ceres [1]), there is a significant difference — we up-
date the structure of the error function between solving
every linear approximation (by finding new structural
and closest point constraints). This is beneficial, since
solution to the updated function is generally closer to
the final solution.

1.3. Optimization

For all our experiments we have run our algorithm
using the same set of parameters:

• Starting window length li = 3m.
• Number of iterations niter = 12.
• Weights for energy function terms:

– Initial: wC = 1500, wL = 1000,, wH =
1500, wG = 1500

– Final: wC = 1000, wL = 1000, wH =
1000, wG = 1000

Similarly to the feature correspondence thresholds, the
weights are linearly interpolated between initial and
final values throughout the optimization.
Planar Structure Error. The coplanar misalignment
Ecp of one cluster proxy Pa to Pb is computed by sum-
ming the squared distances from samples of points qs
(s ∈ [1, smax]). Each qs is either sampled from
the boundary of a 1 meter radius disk around pa,
or is at the same location as pa (In our experiments
smax = 5):

E→cp (A,B) =

smax∑
s=1

((qA − qB) · nB)2

Ecp(A,B) = E→cp (A,B) + E→cp (B,A)

Local Alignment Error. We compute the misalign-
ment Et of one rigid transformation Tj to another Tk
in the neighborhood of a point cj by summing the
squared distances between points ps (s ∈ [1, smax])

sampled uniformly on a 1 meter radius sphere when
they are transformed by Tj versus Tk (smax = 8):

Et(Tj , Tk) =

smax∑
s=1

(Tj(ps)− Tk(ps))2

These formulations provide error terms measured
in squared distances between corresponding points
(rather than differences of matrix elements, angles,
viewpoints, etc.) and thus are more natural to com-
bine with other error terms of the same form in our
multi-objective optimization (as noted in [7]).

2. Ground Truth Correspondence
Collection

To collect the set of correspondences required for
our evaluation metric we have designed a user inter-
face to assist in the collection process, as well as to
evaluate the quality of correspondences. The interface
can be seen in figure 1. The user is presented with
view of image-pointcloud pairs. The user can freely
scroll through the sequence to select corresponding
pairs. Once a pair of images is marked the user can
begin clicking points. Anytime a point is clicked the
3D view is also updated, which gives the user a sense
where exactly a point lands in 3D space.

Figure 1: Interface for collecting ground truth correspondences

Our interface also has an evaluation mode, which
runs an iterative reconstruction algorithm with pair-
wise transformations and ground truth correspon-
dences as constraints (Figure 2). We found this to
be an easy way to validate that the clicked correspon-
dences are correct, as an erroneous ground correspon-
dence will lead to big errors in the resulting recon-
struction and can be easily fixed by the user.

Figure 2: Interface showing resulting reconstruction. On the side
panel you can see colored button relating to pairs of images marked
by the user.

3. Quantitative Results
Below we present the full set of results we used to

produce a Table 1 in the paper. We also add results
produced with two realtime tracking methods, Elas-
tic Fusion [9] and Kintinuous [8]. Note that real-time
methods are not expected to perform as well, due to the
trade-offs one needs to make for a real-time system.

We would also like to note that Choi et al.[2] does
not perform well on many sequences in our test set, as
these sequences often are lacking strong geometrical
features, and most of the tracking depends on RGB
data. Since Robust Reconstruction [2] does not use
the color channel, we do not expect it to be able to
deal with such cases.

3.1. Robust Reconstruction

We have run the Robust Reconstruction[2] system
with the default settings for SUN3D dataset, published
by the authors in their downloadable binary package.
The only change made was to modify the Fragmen-
tOptimizer.exe parameter from –slac to –rigid, which
led to better results on SUN3D dataset. In running
their code, we obtained slightly different results than
those published in their paper. Though the difference
is minor, we present both results in Table 2 to avoid
confusion in other comparisons.

4. Qualititative Results
To demonstrate the robustness of our algorithm we

show the results on the SceneNN [5], BundleFusion
[3] and SUN3D [10] datasets.
SceneNN We show the resulting reconstructions of 6
SceneNN scenes (Figure 3), produced using Voxel-
Hashing [6] with trajectories pre-computed by our al-
gorithm. We also show the overhead pointcloud ren-

Sequence Name Ours SUN3D RR Elastic Fusion Kintinuous
brown bm 1 0.08345 0.25424 1.60400 1.90877 1.15671
brown bm 4 0.10545 2.00690 4.12032 0.64936 1.78738

brown cogsci 1 0.07161 0.89468 1.52869 0.75887 0.55985
brown cs2 0.06346 0.21408 3.55556 0.89136 0.47414
brown cs3 0.10796 1.90186 5.90101 2.90157 1.58114
hv c11 2 0.06471 0.40341 0.27989 0.18390 0.15577
hv c3 1 0.06541 0.09465 0.41692 0.30158 0.31309
hv c5 1 0.07766 0.26991 0.11158 0.29152 0.28333
hv c6 1 0.07524 0.62119 0.26693 0.27570 0.30313
hv c8 3 0.08656 0.45715 0.24724 0.38132 0.28994

home at scan1 2013 jan 1 0.04063 0.21196 0.07570 1.18692 1.23930
home bksh oct 30 2012 0.05871 0.15002 1.23549 1.47723 0.58745

home md scan9 0.06063 0.16358 1.04740 1.29805 0.54559
nips 4 0.05109 0.15168 0.06181 0.45188 0.40953
scan1 0.06788 0.52143 1.91663 1.98147 1.46379
scan3 0.05042 0.07849 0.06207 0.13804 0.13694

maryland hotel1 0.06140 0.30138 0.05156 0.65117 0.25950
maryland hotel3 0.05794 0.20083 0.05260 0.15046 0.11797

d507 2 0.13874 0.32074 0.08354 0.57447 0.52683
ted lab 2 0.04699 0.11556 0.05600 0.61538 0.59755
76-417b 0.04852 0.09020 0.04724 0.70408 0.68069

76-1studyroom2 0.05347 0.17491 0.12469 0.55497 0.27545
dorm next sj 0.08861 0.21222 0.23403 0.19009 0.12923

lab hj 0.09000 0.67366 0.10347 0.47529 0.16703
sc athena 0.09680 0.13690 1.41592 1.40803 0.23490

Table 1: Detailed quantitative results. RR abbreviates Robust Reconstruction by Choi et al.[2]. Errors are RMSE of distances of corresponding
points given the trajectory produced by each method, in meters.

Sequence Name Ours RR RR(published)
hv c5 1 0.0689 0.1116 0.1938
hv c6 1 0.0680 0.2669 0.2403
hv c8 3 0.0731 0.2472 0.2007

maryland hotel3 0.0606 0.0526 0.567
d507 2 0.1196 0.0835 0.2506

76-1studyroom2 0.0567 0.1247 0.2497
dorm next sj 0.0905 0.2340 0.2583

lab hj 0.0898 0.1035 0.1045

Table 2: Result comparison between trajectories computed with
Choi et al. [2](abbreviated as RR), and trajectories published at
http://redwood-data.org/indoor/models.html. Errors are RMSE of
distances of corresponding points given the trajectory produced by
each method, in meters.

derings of other reconstructed scenes in figure (Figure
14). Note that we provide the qualitative results, as
there is no ground truth or quantitative metric to eval-

uate them.
BundleFusion We also show results of reconstruc-
tions of the 8 scenes published recently with Bundle-
Fusion [3](Figure 4). Our reconstructions match the
quality of the results presented on the BundleFusion
website1, and are created with same parameters we
used for our SUN3D evaluation. Again we show the
qualitative results as there is neither ground truth infor-
mation or code released for BundleFusion (as of writ-
ing of this document).
SUN3D Lastly we also present visualizations of 374
scenes reconstructed from the SUN3D dataset. We
found that our method produces good results in 350
cases (Figures 5,6,7,8,9,10,11,12). For 16 cases the
resulting reconstructions have errors, mostly due to
lost tracking by SUN3DSfM during the initialization

1http://graphics.stanford.edu/projects/bundlefusion/

phase which leads to separate parts of the reconstruc-
tion that are aligned well, but that are not aligned with
each other (Figure 13). For 8 cases we have observed
some unexpected aberrations, most likely due to issues
with pairwise matching code producing initializations.

Figure 3: High quality renderings of SceneNN scenes. On the right hand side we show birds-eye view of the scene with regions marked,
locating zoom-in views. Note that our alignment is able to produce reconstructions that both preserve the overall structure of the room, and
low-scale geometric details.

Figure 4: Overhead renderings of BundleFusion scenes. Note how our results preserve underlying structure of the rooms, keeping the walls
straight, while also producing high quality local alignments, comparable to those in [3]

Figure 5: Overhead pointcloud renderings of SUN3D scenes

Figure 6: Overhead pointcloud renderings of SUN3D scenes

Figure 7: Overhead pointcloud renderings of SUN3D scenes

Figure 8: Overhead pointcloud renderings of SUN3D scenes

Figure 9: Overhead pointcloud renderings of SUN3D scenes

Figure 10: Overhead pointcloud renderings of SUN3D scenes

Figure 11: Overhead pointcloud renderings of SUN3D scenes

Figure 12: Overhead pointcloud renderings of SUN3D scenes

Figure 13: Cases not reconstructing well due to lost tracking in initial alignment. If the transformation between frame i and i + 1 is highly
incorrect, our reconstruction will not be able to recover and will produce erroneous results.

Figure 14: Overhead pointcloud renderings of SceneNN scenes

References
[1] S. Agarwal, K. Mierle, and Others. Ceres solver.

http://ceres-solver.org. 2
[2] S. Choi, Q.-Y. Zhou, and V. Koltun. Robust reconstruc-

tion of indoor scenes. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015.
3, 4

[3] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and
C. Theobalt. Bundlefusion: Real-time globally con-
sistent 3d reconstruction using on-the-fly surface re-
integration. arXiv preprint arXiv:1604.01093, 2016.
3, 4, 7

[4] T. A. Davis. Direct Methods for Sparse Linear Sys-
tems (Fundamentals of Algorithms 2). Society for In-
dustrial and Applied Mathematics, Philadelphia, PA,
USA, 2006. 2

[5] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-
F. Yu, and S.-K. Yeung. Scenenn: A scene meshes
dataset with annotations. In International Conference
on 3D Vision (3DV), 2016. 3

[6] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stam-
minger. Real-time 3d reconstruction at scale using
voxel hashing. ACM Transactions on Graphics (TOG),
2013. 3

[7] K. Pulli. Multiview registration for large data sets. In
Proceedings of the 2Nd International Conference on
3-D Digital Imaging and Modeling, 3DIM’99, pages
160–168, Washington, DC, USA, 1999. IEEE Com-
puter Society. 3

[8] T. Whelan, M. Kaess, M. Fallon, H. Johannsson,
J. Leonard, and J. McDonald. Kintinuous: Spatially
extended KinectFusion. In RSS Workshop on RGB-
D: Advanced Reasoning with Depth Cameras, Sydney,
Australia, Jul 2012. 3

[9] T. Whelan, S. Leutenegger, R. F. Salas-Moreno,
B. Glocker, and A. J. Davison. ElasticFusion: Dense
SLAM without a pose graph. In Robotics: Science and
Systems (RSS), Rome, Italy, July 2015. 3

[10] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database
of big spaces reconstructed using sfm and object labels.
Computer Vision, IEEE International Conference on,
0:1625–1632, 2013. 1, 3

http://ceres-solver.org

